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1. Requirements of Configurable Aerospace Command and Control

(CACC) Systems

The development of a CACC involves a wide range of advanced technologies
including object modeling, databases, distributed computing, communications, networks,
multimedia, visualization, and collaboration. In addition, the nature of CACC imposes a
unique requirement of mobility, which implies that the characteristics of the location,
where a CACC is deployed, vary, especially in terms of networking capability, traffic
loads/congestion, and functional requirements. Thus, the ability of system
reconfigurability and self-adjusting, based on local specifics, becomes very critical.

The increasing complexity of knowledge/information storage, communications,
processing and visualization as well as system/network infrastructures has made the

conventional approaches to developing such information environments very inefficient.

Conventional approaches in designing such a large-scale system involve (1) system
functionality definition, (2) partitioning of the system functionality into sub-functional
blocks, (3) independent development of each sub-functional block into a sub-system
component, and (4) connection of sub-system components to form an entire system.
Problems with such an approach when used to develop a CACC is the lagk of

coordination between the development of individual sub-system components, as well as

the lack of global planning in the foundation of a system.




More specifically, potential drawbacks/risks using conventional approaches to designing

a CACC are described in the following:

e Minimum interoperability between sub-systems or components
e Very Limited system scalability and expandability

e Inability to self-adjust

e System performance degradation

e Long design turnaround time (or time-to-field)

e Error-proneness in system management

To overcome such potential problems, one has to address the foundation of a CACC
system, such that it will provide the capability of allowing sub-systems and components
to be pluggable into the environment and form a coherent system, where exchanges of
events, data, and functions across the boundaries of sub-systems will be seamless and
actions on all sub-systems will be globally coordinated and optimally controlled.

In this proposed effort, we will investigate many such issues and will look into
existing systems, and perform feasibility assessment on existing collaboration systems to
see how much inter-system collaboration functions can possibly be developed through an
external functional extension, i.e., without the access or modification of the source code

of existing collaboration systems.



2. A Natural Software Architecture for CACC — Componenet-Based

Development (CBD)

Component-based software development (CBD) is the latest solution for software
problems. The principle of CBD is “Software Reuse.” Commercially-Off-The-Shelf
(COTS) components perfectly comply with this principle. Users of the COTS
components do not modify the source in any wéy, since the vender of a COTS
component provides only the interfaces that define the behavior of this COTS
component. In short, COTS components are the ideal building blocks for a
component-based software system. In order to construct COTS component-based
software systems (CCBS), developers need a new type of tool to perform the process

of composing these COTS components into a software system.

Software developers use software architectures (SA) to suppress implementation
detail of component-based applications, and to concentrate on the analyses and

decisions that satisfy requirements of these applications.

Architecture description languages (ADLs) provide notations for developers to
describe software architectures. Computer Aid Software Engineering (CASE) tools
help developers transforming these notations into code of a certain programming

language or executable realizations of a certain platform.

On the other hand, software developers expect component-based applications to be

collections of components, rather than “Components + Scripts.” Therefore,

component-based software architectures are “Components + Interactions”, rather than
3
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“Components + Connectors + Behaviors Constraints,” where scripts are used to
describe behavior constraints. In other words, software architectures are
“Components + Interactions”; and component-based applications are collections of

components.

Unified Modeling Language (UML) is the standard notation for modeling software
systems. UML class diagrams and sequence diagrams provide enough notations for
software developers to describe component specifications and interaction

specifications for component-based software architectures.

With these foundations, a new type of component-based software synthesis tool

should be able to:

Transforms the “interaction specification” in the description of component-based
software architecture to “component instances”, which carries out these
“requirements of interactions.”

Realizes the specification of component instances in the architecture using UML.
Generates the component composition of that architecture for a specific executable

model.

This component-based software synthesis tool helps application developers build

component-based systems out of commercial-off-the-shelf (COTS) components. Such a

design flow is shown in Figure 1.
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1.1.1.1 Figure 1 The steps of constructing a component-based

application

3. Problems in Component-Composing Techniques

In order to achieve CBD, researchers have proposed various component-composing

techniques. However, there are three major problems in those techniques:
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1. Existing component-composing techniques fail to meet the expectation of
developers who want to pursue the component-based approach. Few component-
composing techniques compose applications using software components with
neither glue code nor application-defined plug-in mechanisms.

2. Little discussion focuses on “reusing” the existing standard modeling language to
model the component-based applications other than re-inventing “composition
languages.”

3. Software components are “software ICs.” It is difficult to find a software synthesis
system, which produces and verifies the component-based applications,

resembling the ones in handling “hardware 1Cs.”

4. Composing CCBS out of COTS Components

Few component-composing techniques compose applications using software components
with neither glue code nor application-defined plug-in mechanism. This problem occurs
at the design phase of component-based software development process. In general,
software architecture provides solid basis for large-scale development of distributed
applications that use COTS components implemented in multiple programming
Janguages [1]. In other words, software architecture offers an ideal abstraction for

supporting the development of CCBS.

Recently published papers often favor the view that software architectures are

“components + connectors + behavioral constraints.” The components in the context of



software architecture description are the abstractions of the component instances in a
software system. Therefore, this view leads to that component-based applications are
“components + scripts”, which dominates the current component-composing techniques.
However, component integration also addresses two issues: (1) packaging components so
that they can be connected at run-time, and (2) connecting, disconnecting and re-
connecting components at run-time [2]. It is very difficult to handle these two issues with
modeling component-based applications as “components + scripts”, because the scripts
define the control flow at design-time. This observation motivates the search for more
suitable definition of component-based applications and software architecture. The
alternative views regarding “software architecture” and “component-based applications”

arc.

» Software architectures are “Components + Interactions.”

= Component-based applications are collections of components.

4.1. Component Specificafions and Interaction Specifications

A software component is a unit of composition with contractually specified interfaces
and explicit context dependencies only. A component represents a computational,

functional, or data unit in a software system.

In a software system, an interaction represents the connections between components,

including data flow and control flow (execution, invocation), as well as interaction




constraints, including component communication protocols, visibility, timing, and

synchrony.

A component specification, which is not modifiable, of a software architecture
defines the functional constraints of components. It is the static aspects of a software
architecture, components are specified that have to be filled in order to perform the

task of this software system.

The dynamic part of a software architecture is described by interaction specifications.
An interaction specification represents constraints of the communications among
components, including constraints of system configurations. In brief, it is the
combination of the constraints of all the architectural elements, which ére components
and interactions, forms behavioral constraints of a software system. The meta-model

of a software architecture is shown in Figure 2.
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1.1.1.2 Figure 2 Meta-model of Software Architecture

4.2. The Nature of Components

A component specification can abstract a function, data, package, cluster and system

abstraction or a system structure [3]. The nature of components is classified as:

1. Design Components: A component can be a design principle or idea.
2. Specification Component: A specification can be considered a reusable
component. Specifying the expected functionality and behavior of a component

frees the developer to implement this component in a variety of programming

languages [4].




3. Executable Components: The source code of those components is not available,

and the executable components themselves are commercially available (COTS).

4.3. The Properties of Components

The component properties are defined as follows:

» Component Class: A component class describes the structure and behavior of a
single component class or a collaboration of classes.

= Component Family: Although a software component is nearly independent of other
components, it rarely stands alone. A group of components designed for collaborating
with each other forms a “component family.”

*» Component Framework: A software component assumes one or more specific
architectural context. This architectural context is the “component framework™ of this
software component. A component framework is a collection of software components
with a software architecture that determines the interfaces that components may have
and the rules, which govern their composition.

= Component Functionality: A software component fulfills a clear function. A
software component is logically and physically cohesive, and denotes a meaningful
structural and behavioral chunk of a software system.

» Component Interfaces: A software component conforms to a set of interfaces. The
interface specifies the services (messages, operations, and variables) that a component

provides. When a software component conforms to a given interface it means that this

10



software component satisfies the contract specified by that interface, and may be
substituted in any context wherein that interface applies.

 Substitutability: A software component is a replaceable piece of a system. A
software component is substitutable for another component, which realizes the same
interfaces. It helps the evolution of a software system, once deployed by making it
possible to upgrade and evolve parts of the system independently.

* Hierarchical Construction: A software component exists in this component
framework and represents a fundamental building block of a software system.
Furthermore, this construction is hierarchical: a software system at one level of
abstraction is a software component at a higher level of abstraction.

. Introspection': The specification of interfaces of a software component can be
discovered at run-time. |

* Component Repository: Every component framework provides a component
repository engine that ships as a component. A COTS component installation
program must register the shipped component classes in one of component
repositories.

These properties of a software component illustrate that a software component is a

conceptual unity of design, and construction.
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4.4. Component Interactions

The dynamic part of a software architecture is described by interactions. An
interaction declares how and in which order stimuli complying to its message are to
be exchanged. Integration problems arise when a software component depends on
certain assumptions concerning its interactions with its environment, but is to be
placed into a software system that is based on different assumptions. The result is
interaction protocol mismatches. There are four types of interactions and their
possible mismatches with the environment:

14



1.  Component-platform interactions. A software component must be executed
somewhere. It can be either a real processor and an operating system for binary
executables, or a virtual one. If a software component was compiled for one type
of platform, it will need an emulator or a code converter in order o run it on
another platform.

2.  Component-hardware ihteractions. A software component can interact directly
with hardware component through a certain communication protocol, such as

writing and/or reading from ports. If the port’s numbers are different from what is

expected by the component, the component must undergo some modification.

3. Component-user interactions. A component’s user interface requirements may
also change. For example, a component can have its messages in one language,
when the system requires another language.

4. Inter-component interactions. A software component always interacts with other
software components, and there can be mismatches between the components. A
set of possible mismatches between components [5]: representation,
communication, packaging, synchronization, semantics, control, etc.

These four types of interaction protocol mismatches must be overcome and investigated
in order to reuse COTS components. This report focuses on the study of inter-component

interactions. There are four main categories for causing the mismatches in inter-

component interactions.




1. Assumptions about the nature of the components: Within this category, there
are three areas: (1) infrastructure—assumptions about the substrate on which the
component is built; (2) control model—assumptions about which component(s) (if
any) control overall the sequencing of computations; (3) data model—assumptions
about the way the environment will manipulate data managed by a component.

2. Assumptions about the nature of the connectors: Within this category, there are
two areas: (1) protocols—assumptions about the patterns of interaction
characterized by a connector; (2) data model—assumptions about the kind of data
that is communicated.

3. Assumptions about the global architectural structure: These include
assumptions about the topology of the system communications and about the
presence or absence of particular components and connectors.

4. Assumptions about the construction process: In many cases, the components

~ and connectors are produced by instantiating a generic building block. For
example, a database is instantiated, in part, by providing a schema; an event
broadcast mechanism is instantiated, in part, by providing a set of events and
registrations. In such cases, the building blocks frequently make assumptions
about the order in which pieces are instantiated and combined in an overall
system.
In order to compromise these possible mismatches, the realization of an interaction

specification must possess the following entities:
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Inter-framework Communicator: It communicates with more than one
component frameworks if required. If two or more involved components of an
interaction specification assume different component frameworks, the
corresponding realization of this interaction must contain a service or a group of
services that can communicate with all the specified component frameworks. This
capability eliminates the possibility of having mismatches caused by different
assumptions about the substrate on which the component is built.

Sequencing Control: This guarantees a certain sequence of computation if
required. This capability provides the overall sequencing control mechanism in
order to guarantee a certain sequence of computation specified in the software
architecture. |

Data-model Transformation: It provides a suitable data model for each
involving component.

Communication Pattern Handler: It identifies the communication pattern
required by communicating corﬁponents. The realization of an interaction must
handle either synchronous or asynchronous communication patterns.

Anomaly Observer: It is connected to external monitoring services to observe the
anomaly of a software system if such services are available and are required.
Instantiation Control: It ensures the order of the instantiation of components.
This requires the realization of an interaction specification to provide the overall
instantiation control mechanism in order to ensure the order of the instantiation of

components specified in a software architecture.

17




4.5.

Connector: It receives one or more registered messages from senders and invokes
the corresponding action according to the interaction specification. This capability
is required because the communicating components may assume different
interfaces for communication. This is always the case for independently developed
components.

Component Container: It provides identifications for components in a software
architecture. A component container instantiates the contained components
according the specification given by an instantiation control. A component
container also defines the necessary interfaces and rules, which the contained

components must comply.

Requirements for Composing Components

It has been specified [6] that the following characteristics are necessary to compose

components together: (1) specifying connections of the components, (2) bridging

architectural styles, (3) adapting components that have not been designed to work

together, and (4) managing dependencies between concurrent and distributed

components. These characteristics indicate the following technical requirements:

Communication and binding: components’ behavior consists in the exchange of
messages; components’ functionality is instantiated by binding parameters to
values; components may themselves be values.

Concurrency: an application is a concurrent composition of objects whether or not

there may be multiple concurrent threads active at any time.
18



3. Choice: a component typically provides an interface consisting of a choice of
services.

4. Abstraction: components are abstract entities whose behavior and functionality is
only accessible through their interface;

5. Instantiation: components can be dynamically instantiated and thus it must be
possible to generate new names for components and their communication
channels, and to communicate these names with existing components.

The following is an explanation of each technical requirement and its corresponding
capabilities and properties provided by the realization of an interaction and component

specification:

1. Communication and binding: components’ behavior consists in the exchange of
messages that is handled by connectors according to the component interfaces
defined by each involved coinponent class; components’ functionality is
instantiated, by instantiation control, by binding parameters to values; components
may themselves be values. The specification of interfaces of a software component
can be discovered at run-time. (Introspection)

2. Concurrency: an application is a concurrent composition of objects whether or not
there may be multiple concurrent threads active at any time. Sequencing Control
guarantees the message sequence of each thread; Communication Pattern Handler
handles either synchronous or asynchronous communication patterns. Anomaly

Observer usually is required for resolving resource conflict.

19




3. Choice: a software component typically provides one interface of component
interfaces consisting of a choice of services. The specification of interfaces of a
software component can be discovered at run-time. (Introspection)

4. Abstraction: components are abstract entities whose behavior and functionality is
only accessible through their interface;

5. Instantiation: components can be dynamically instantiated (Instantiation Control),
so it must be possible to generate new names, by the Component Container, for
components and their communication channels, and to communicate these names to

existing components.

4.6. Implicit Entities in an Interaction Specification

A realization of an interaction specification must provide the following entities, which
are connector, component container, inter-framework communicator, sequencing control,
communication pattern handler, data-model translator, instantiation control, and anomaly
observer. Whether these entities are abstract or not depends on the given software
architecture, and necessity based on the regarding components and component

frameworks. However, all these entities do offer precise semantics to a software system.

4.6.1. Connector

A connector receives one or more registered messages from senders and invokes the

corresponding action according to the interaction specification. A connector provides

20



service for the communicating components, which assume the different interfaces for

communication. This is always the case for independently developed components.

Connectors mediate interactions but are not “things” to be hooked up. Each connector has
a protocol specification that defines its properties. These properties include rules about
the types of interfaces it is able to mediate for assurances about properties of the
interaction, rules about the order in which things happen, and commitments about the
interaction such as ordering, performance, etc. Each is of some type or subtype (e.g.,
remote procedure call, pipeline, broadcast, event). The specific named entities visible in

the protocol of a connector are roles to be satisfied (e.g., client, server).

To avoid confusion with the traditional “connector,” in this project we use “I3S
connector” as the identification of this entity. An I3S connector is a component class that
consists of following attributes, methods, and notifications. Furthermore, an I3S
connector accepts multiple messages that come from different senders. This section just
illustrates the basic properties, which handle the connection among communicatidn
components, of an I3S connector. The following sections may add some other properties

into the I3S connector.

1. Attributes of an I3S connector:
B Sources: The names of component instances that send messages to a target

component instance and the names of messages that are sent to a target

component instance.




| Target: The name of a component instance that receives messages from source
component instances and the name of a method that is expected to be invoked.
B Parameter Mapping: The mapping between the parameters of messages of
source component classes and the parameters of the method of the target
component class.
2. Methods of an I3S connector:
B Reset: Clear all the assignments to this I3S connector.
3. Notifications generated by an I3S connector:
M Forward Message: Forward each received message.
B Invocation Succeed: Indicate the intended invocation has been successfully
performed, and the return value is the argument of this notification.

B Invocation Failed: Indicate the intended invocation has failed.

4.6.2. Component Container

Similar to an STL container template class, a component container manages a set of
component instances, which can be instances of any component class that complies with
the requirements of residing component framework as well as the requirements implied
by a component container. This section describes the basic properties required of a
component container. A special component container class may have additional

parameters, and additional methods.
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A component container must define the necessary interfaces and rules, which the
contained components must comply. Therefore, an I3S component container is a

component class that consists of following attributes, methods, and notifications.

1.  Attributes of an I3S component container:
M [teration model: The method of retrieving a component.
B Supported component frameworks: The component frameworks that the
container supports.
B Instantiation Sequence: The sequence of how the container instantiates
container components.
2.  Methods of an I3S component container:
M Add: Adds a component to the container.
M Get A Component: Retrieves a component in the container.
B Remove: Removes a éomponent from the container.
3. Notifications generated by an I3S component container:
B [nsanitation Succeed: Indicates that the intended insanitation sequence has been
successfully performed.
B Insanitation Failed: Indicates that the intended insanitation sequence has failed

to conduct.

4.6.3. Instantiation Control

Instantiation control assures the order of the instantiation of component instances. This

requires the realization of an interaction specification to provide the overall instantiation
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control mechanism in order to assure the order of the instantiation of components

specified in a software architecture.

When an identification of the component class is known, the development tool needs to
include the identification of the component class when saving the instantiation sequence
of components persistently. This persistent component is the instantiation control. The
instantiation control, which is saved in the format required by the component container,
describes the exact source of each component’s class code, which is referenced at run
time, in addition to each component ‘s instance initialization data. An instantiation
control provides necessary information for a component container to create previously
saved instances of component classes with some persistent data existing in the
instantiation control. For every component framework, instance data has an associated
identification of component class—thus, a component container knows which class code
it has to instantiate. Once the component container creates that instance, it initializes the
instance with persistent data saved in the instantiation control. The storage format of an
instantiation control depends on the target component container and the component

framework.

The instantiation control is a component class that consists of following essential

attributes, and methods.

1. Attributes of an instantiation control:

M SupportedComponentContainer: The supported component container.
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2.  Methods of an instantiation control:
WM Read: Reads data from the instantiation control.

B Write: Writes data to the instantiation control.

4.6.4. Inter-framework Communicator

Integrating a software component into a software systerﬁ is significantly easier when this
software system consists of software components that are built to the same component
framework. There are many COTS component frameworks including CORBA,
COM/ActiveX, JavaBeans, Java class libraries, and Microsoft Visual Basic controls.
However, if two or more communicating components of an interaction specification
assume different component frameworks, the corresponding realization of this interaction
must contain mechanism that can communicates with all the specified component
frameworks. In recognition of this need, products whose function is to bridge between
components written to different frameworks arise, like the CORBA/COM bridge and the
ActiveX/JavaBean bridge. Therefore, component frameworks do not need to consider a
| component’s inter-framework communication when attempting to reuse it. Furthermore,
it is indicated [7] that no single component frameworks will ever be appropriate for all

software components.

This section captures following attributes, methods, and notifications of an inter-

framework communicator.

1. Attributes of an Inter-framework Communicator:
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B Sources: The names of component instances that send messages to a target
component instance; and the names of messages that are sent to a target
component instance.

B Target (Optional): The name of a component instance that receives messages
from source component instances and the name of a method that is expected to
be invoked.

M Parameter Mapping: The mapping between the parameters of messages of
source component classes and the parameters of the method of the target
component class.

B Supported Component frameworks.

Methods of an Inter-framework Communicator:

B Reset: Clears all the assignments to Inter-framework Communicator.

B Merge: Merges with other inter-framework communicators that support
different component frameworks.

Notifications generated by an Inter-framework Communicator:

W Forward Message: Forwards each received message.

B Invocation Succeed: Indicates that the intended invocation has been
successfully performed, and the returned value is the argument of this
notification.

B Invocation Failed: Indicate the intended invocation has failed.

4.6.5. Sequencing Control
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A sequencing control provides t_he overall sequencing control mechanism in order to
guarantee a certain sequence of computation specified in the‘ software architecture. A
sequencing control is the mechanisms for managing the flow of control among the
components. It shows the major execution sequences, where execution sequences may be
asynchronous or parallel, and how synchronization is managed. It also allows anomalous
conditions such as error handling and exception conditions that may dynamically alter the
flow of execution. To guarantee a certain sequence of specified computations, a

sequencing control exists as I3S connector’s properties.

When a message is sent to an I3S connector, this I3S connector must validate that input
messages are received according to the specified sequence. A software architect may
specify the number of occurrences of an interaction and the time elapse between
sequenced messages. In this case, a counter and a timer are required for an I3S connector.
Furthermore, a sequence of messages may be unconstrained, but there may exist
combining conditions among messages, such as AND constraints, and OR constraints. In
this case, an I3S connector synchronizes these messages following the combining
conditions. Therefore, an I3S connector must have the following attributes, methods, and

notifications to perform the sequencing control.

1. Sequencing Attributes of an I3S connector:
B Sequence Mapping: The mapping between the source messages and the
receiving order and/or time elapse.

B Counter: The number of occurrences of the specified method invocation.
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B Combining conditions: The combining conditions among source messages.
2. Sequencing Methods of an I3S connector:

B Reset Sequence: Resets the sequence to the initial state.

B Reset Counter: Resets the counter.

B Unconditional invocation: Invokes the target method regardless of the

sequencing control.

3. Sequencing notifications generated by an I3S connector:

B Time Expired: Exceed the specified time elapse for a sequenced message.

m  Out of sequence: Indicate the arrival of an out-of-sequence message.

4.6.6. Data-model Translator

The data-model translator provides the suitable data model for each involving
component. Data modeling, as it applies to component-based software systems, is the
process of defining the vocabulary and content to be used to represent information in a
component-based software system. The vocabulary defines the terminology to be used to
describe, or attribute, individual data elements; and the content defines what data is to be
included in the system and what is not. The modeling process is independent of specific
hardware and software, which only become important at a subsequent implementation
stage. To be useful, the data modeling process must be carried out in an open, inclusive
manner, so that the community of eventual users has adequate input into the design
process. The whole reason for the data modeling process is to build systems that make

information more useable and effective [8].
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Each component defines its own logical construct for the storage and retrieval of
information. This logical construct consists of a collection of data structures, a collection
of operators, and a collection of integrity rules. A data model defines the elements
required to describe those aspects of the ‘real world’, which it is designed to model, and
the nature of the links between these elements. This is achieved by rigorous analysis of
the elements and the ways in which they interact when this component is designed. To
avoid ambiguity, the data model itself employs very precise definitions of the
terminology it uses. The COTS component framework, which this component resides, is
responsible of these definitions. Similar to a programming language, a COTS component
defines the basic data types and their ranges, and the rules of converting these data types
to each other. Therefore, one of data-model translator’s tasks is applying these rules into
the communication in case there is a data-model mismatch caused by basic data type
mismatch. However, this solution only applies to the communicating componehts
residing in the same component framework, and the mismatch is due to basic data type

mismatch.

Two approaches were used to resolve the data-model mismatch. For the data-model
mismatches occurring between components residing in the same component framework
and the mismatch being caused by component framework defined primitive data types,
the I3S connector handling the communication of involving components implicitly calls
the default data type converter to resolve this mismatch. For complex data types

conversion and inter-framework data-model mismatch, the development tools
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automatically constructs an XML document for each relating data entity of
communicating components, and interactively request decisions from the software
developer until the mismatch has been resolved. Furthermore, each data-model
translation or complex data type conversion forms a new data converter and stores as an
I3S data converter. Therefore, an I3S connector must have following attributes, and

notifications to resolve the data-model mismatch.

1. Data conversion related attributes of an I3S connector:
B Data model mapping: The mapping between the data model mismatches and
the I13S data converters.
2. Data conversion related notifications, generated by an I3S connector:

M Data conversion failure: The process of converting data has failed.

4.6.7. Communication Pattern Handler

A Communication Pattern Handler identifies the communication pattern required by
communicating components. The realization of an interaction must handle either
synchronous or asynchronous communications. Communications are synchronous when
the sender component of a message must wait for a response from the receiver
component of the message before performing subsequent tasks. The period that the
sender component must wait depends on how long it takes the receiver component to
handle the message and produce a response. On the other hand, with asynchronous
communications, a sender component sends a message to a receiver component and

moves on to subsequent tasks immediately. If a response from the receiver component is
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expected, the sender component decides when it actually looks for and processes the
response. However, there is no guarantee that a receiver component will process the

message within any particular period.

A Communication Pattern Handler is an implicit entity that keeps track of the incoming
messages’ communication patterns for an I3S connector. Therefore, an 13S connector
must have following attributes, and notifications to handle different communication

patterns.

1. Communication related attributes of an I3S connector:
n Cominunication pattern mapping: The mapping between the source messages
and their communication patterns.
B Time constraints: The time constraints for the synchronous messages.
2. Communication reléted notifications generated by an I3S connector:
B Communication Time Expired: Exceeds the specified time constraint elapse for

a synchronous message.

4.6.8. Anomaly Observer

An Anomaly Observer is an entity that traps and reports the anomalous behaviors of a
software system. A component-based software development introduces additional
sources -of risk because (i) independently developed components cannot be fully trusted
‘to conform to their published specifications and (ii) very often, software failures are

caused by systemic patterns of interaction that cannot be localized to any individual
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component. A software failure is the inability of a software system to fulfill a task it was
intended. An associated term is “fault” that is the actual cause of the failure. This leads to
the fault management that aims at handling faults before they cause a failure. Fault
management has three phases: monitoring to detect fault symptoms, diagnosis to identify
the type and location of the fault and correction to eliminate the fault [9]. Therefore, a
separate exception-handling infrastructure is necessary to address these issues. An
approach is proposed [10] to separate the exception handling functions from normative
functions in component-based software systems. Components focus on executing their
own “normal” problem solving behavior, while an exception handling service focuses on

detecting and resolving exceptions in the system as a whole.

In highly complex systems, it is unrealistic to expect that automated processes can
completely detect, diagnose, and resolve all possible exceptions. Furthermore, the fault
diagnosis, resolution, and correction are usually off-line tasks. Even an automated system
can resolve or correct some minor faults during the run-time; the underline causes still
exist in the design of some particular components, or the overall system configurations or
designs. The most important task is to report these failures in order to help component
developers and system architects find an optimal solutions for the observed run-time
faults. Therefore, the task for an Anomaly Observer assigned by this article is to detect
fault symptoms and identify the location through the failure notifications from the I3S

connectors. The diagnosis and fault correction is beyond the scope of this project.
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Figure 6 The COTS Component-based Architecture

(1) UML as an ADL

This section presents a solution for solving the second problem: Little discussion focuses
on “reusing” the existing standard modeling language to model the component-based

applications other than re-inventing “composition languages.”

UML stands for Unified Modeling Langilage. UML is an object modeling technique that
evolved because of the combined work of James Rumbaugh, Grady Booch, and Ivar
Jacobson; each of theni had their own OO modeling notation. The Object Management
Group (OMG) adopted UML as a standard for software modeling in late 1997. UML is
now the standard for software modeling. UML provides a blueprint for developers so
they know exactly what they need to build and for project managers so that they can

precisely estimate the cost of a given project. UML is able to bridge between technical
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developers and their non-technical users through a set of interrelated diagrams of the
various parts of a software system. Moreover, UML allows the developers to get a precise

understanding of the exact requirements that the users have for the system being built.

The software architecture of a component-based software system defines its high-level
structure as a collection of communicating components. To avoid the deficiencies of
using ad-hoc and informal notations to describe architecture, the software engineering
research community has pioneered ADLs that have well-defined semantics and tools for
parsing, compiling etc. However, instead of using ADLs, industry has focused on the
UML. Many companies are using UML for architectural description. In fact, the UML
developers are advocating this use and the introduction to the latest version states: “One
of the key motivations in the minds of the UML developers was to create a set of
semantics and notation that adequately addresses all scales of architectural complexity,

across all domains [11].”

The shortcomings of UML as an ADL are discussed in the following:
1. The formal analysis and semantics of software architecture. Within the UML

semantics, OCL is used as invariants on the metaclasses in the abstract syntax as
well as to define ‘additional’ operations. In other words, OCL is used as syntactic
notation for component constraints, but not as notation to define an appropriate
semantics for a software system. However, component constraints need to be
considered at the same level as the component semantics. OCL is also too

implementation-oriented and not well suited for conceptual modeling [12] and
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formal analysis. The UML does provide a definition of the static format of the
model. This meta-model is considered as a semi-formal definition since a meta-
model is expressed in UML class diagrams. Improvements in these semi-formal
UML semantic descriptions are needed to convey a rigorous semantic
representation and provide tool support to verify UML diagrams against an
unambiguous specification of UML semantics [13]. A likely alternative is to
introduce a formal language, which specifies component semantics and additional
properties for constraining components.

An effective tool for the direct execution of constructed UML models, analyzing
the software architectures, active specification, and supporting dynamism. Model
checking is a method for formally verifying finite-state concurrent systems.
Symbolic algorithms are used to traverse the model defined by the system and
check if the specification holds or not. Neither Microsoft Visio nor Rational Rose is
a model checker. Analysis of architectures is rather primitive in either Microsoft
Visio or Rational Rose, since the complete formal semantic model of UML is yet to
be finalized. Both Microsoft Visio and Rational Rose provide limited support for
active specification. For Rational Rose, it is a programming language based
support, which might involve the syntax checking for desired programming
languages. The Microsoft Visio emphasizes the drawing function rather than
semantics checking or analyzing. However, both provide some connection points

for importing customized functionality that enables sophisticated support for active

specification. UML itself does not support run-time evolution, or dynamism. The
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limited support for modeling dynamism in existing ADLs, including UML, is
reflected in the limited tool support for dynamism. Neither Rational Rose nor
Microsoft Visio provides the desired manner of supporting dynamisms similar to
MILs: Architectural components are implemented in a programming language and
the architectural description serves only to ensure proper interconnection and
communication among them.

Automatic application generation. UML are used as modeling notations and
many UML CASE tools, such as Rational Rose for J [14], C++ [15], and Visual
Basic [16], provide imﬁlementation generation support. However, they do not take
the final refinement step from architectural descriptions to source code. For
example, Rational Rose for C++ [15] provides a C++ class hierarchy for its
concepts and operations. This hierarchy forms a basis from which an
implementation of a software architecture is produced. Application skeletons
produced by Rational Rose for C++ facilities result in instantiated, but partially
implemented, framework classes.

Description of interfaces as first class entities. The general interface description
can be found in the UML component diagrams, which are not intended to represent
the logical decomposition of a software system into reusable and combinable
subsystems. For the interface definition, UML uses a simple list of the interface
methods. This information is put inside the class definition in a UML class
diagram. The class diagrams also show the relations among modules in addition to

a complete description of the modules.
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5. Description of connectors, which specify component inter-connections
precisely and intuitively, as first class entities. UML does not offer the concept of
connectors as first-order objects, which would be a hybrid of an association
(association class) and a dependency between a class and an interface of another
class.

6. Hierarchical architectures for supporting software evolution. UML itself does not
support run-time evolution, or dynamism.

7. Description of stylistic constraints. This shortcoming of UML is due to the lack of
formal notation of describing architectural constraints.

The solutions for shortcomings of UML being an ADL are:

1. The formal analysis and semantics of software architecture. UML’s OCL is
used as syntactic notatiori for component constraints, but not as notation to define
an appropriate semantics for a software system. Oﬁ the other hand, component
constraints need to be considered at the same level as the component semantics.
OCL is also too implementation-oriented and not well suited for conceptual
modeling [12] and formal analysis. The UML provides a definition of the static
format usin'g‘meta-model that is expressed in UML class diagranis. A class diagram
is typically not refined enough to provide all the relevant aspects of a specification
[11]. To avoid ambiguities introduced by natural language, formal languages have
been developed. However, formal languages are only usable to people with a string

mathematical background, but difficult for the average business or system modeler

to use [11]. Therefore, the task of formalizing a software system should be
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automated, and supported by a tool. A formal semantics for a modeling notation
can be obtained by defining a meaning function from syntactic structures in the
UML diagrams to artifacts in the formally defined semantic domain. This section
defines meaning functions for UML class diagrams and sequence diagrams in order
to justify the correctness of the modeled systems. We uses the PROMELA [17] as
the formal notation for system specifications.

. An effective tool for the direct execution of constructed UML models, analyzing
the software architectures, active specification, and supporting dynamism. Model
checking is a method for formally verifying finite-state concurrent systems. Model
checking is usually done by the direct execution of a constructed software
architecture, i.e. a UML model, before the final executable image has been
generated. There are several model checkers for UML, such as SPIN, vUML,
xUML, ¢TLA, etc. We uses an existing model checker with the I3S.

. Automatic application generation. The I3S generates executable systems based
on the given UML models.

. Description of interfaces as first class entities. The general interface description
can be found in the UML component diagrams. For the interface definition, UML
uses a simple list of the interface methods. This information is put inside the class
definition in a UML class diagram. This can be viewed as a user friendliness issue.
Although there is no conclusion that which way is better, it is a fact that UML is

much more popular than any modeling notation that “is” an ADL.
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5. Description of connectors, which specify component inter-connections
precisely and intuitively, as first class entities. UML does not offer the concept of
connectors as first-order objects, which would be a hybrid of an association
(association class) and a dependency between a class and an interface of another
class. However, we do not consider this is an important issue for synthesizing
COTS component based applications. Furthermore, EDCS, that sponsors these
research on ADLs such as C2, Wright, CHIME, and ACME, states clearly that
(software) architecture describes component topology and interactions in terms of
legal and illegal configurations and sequences of events [18].

6. Hierarchical architectures for supporting software evolution. UML itself does
not support run-time evolution, or dynamism. We do not intend to increas¢ or
modify the notation of UML. Instead, we use the I3S to overcome this shortcoming.
However, UML does support hierarchical construction in which UML treats the
model of a system as a component.

7. Description of stylistic constraints. This shortcoming of UML is due to the lack of
formal notation of describing architectural constraints. The translation of stylistic
constraints of a software system is beyond the scope of this project. However, with
proper meaningful functions, the stylistic constraints can be translated into a desired
formal language, and verified by the associated tools.

A UML model captures the static and dynamic features of a software system. A software

system modeled by UML notation uses various diagrams for describing the static and

dynamic features of this system. This UML model, which consists of a set of interrelated
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diagrams, often starts from a typical set of views, which is the 4+1 view model as shown

in Figure 7.
End user Programmers
- Functionality - Software management
- Vocabulary
Logical View »Development View
Analysts/Testers .
- Behavior ] <Use Case V|ew>
Process View » Deployment View
System integrators System engineering
Performance,Scalability, System topology, Delivery
Throughput and installation,

Communication

Figure 7 The “4+1” View Model

However, different diagrammatic representations of the same information may vary in the
computational efficiency of working with these diagrams [19]. In order to efficiently
work with UML diagrams and define meaning functions for the essential UML diagrams,
next section explores the effects of diagrammatic representations on the task of

integrating multiple diagrams focusing on modeling COTS component-based systems.

There are three major obstacles for accomplishing this goal of using UML actually
developing COTS component-based systems. To overcome these obstacles, we propose

the following solutions:
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1. UML can function as an ADL. This section summarizes this discussion, and uses a
ciassiﬁcation and comparison framework for software ADL to classify UML. In
this section we also propose a solution for effectively using UML as an ADL.

2. UML uses various diagrams for describing system behavior. However, different
diagrammatic representations of the same information may vary in the
computational efficiency of working with these diagrams. In this section we explore
the effects of diagrammatic r_epresentations on the task of integrating multiple
diagrams focusing on modeling COTS component-based systems.

3. The existing UML CASE tool is not facilitated for synthesizing COTS component-
based systems. This issue will be discussed in next section.

In addition to these issues, we formalize the class diagrams and sequence diagrams with

focus on modeling COTS component based software systems in this section.

S. Intelligent Software Synthesis System

In This section we propose a solution for solving the third problem: Software components
are “software ICs.” It is difficult to find a software synthesis system, which produces and
verifies the component-based applications, resembling the ones in handling “hardware
ICs.” To solve this problem, we use I3S that helps application developers build
component-based systems out of comrhercial-off—the-shelf (COTS) components. I3S
directly maps the design specifications using the notations of UML class diagrams and

sequence diagrams at instance level to an executable realization that is a collection of




COTS components without the tedious work of gluing or wrapping components together

using particular texture programming or scripting language.

We will describe the synthesis steps for transforming the interactions among component
instances into attributes of instances of the interaction entities. We use the SPIN to
model-check the result of this transformation. The previous section indicates that the
existing UML CASE tool is not facilitated for synthesizing COTS component-based
systems. Therefore, 13S emphasizes the solving of this shortcoming; I3S is implemented

as an add-on component to an existing UML tool.

One of the important tasks to an effective technique for software reuse is the automatic
mapping from abstraction specification to abstraction realization [1]. Moreover, Software
components are “software ICs.” However, It is difficult to find a software synthesis
system, which produces and verifies the component-based applications, resembling the

ones in handling “hardware 1Cs.”
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Figure 8 UML Constructs used in Sequence Diagram
A synthesis tool targeting at the component instance level consists of three major steps:

Design specification: Object-oriented analysis and design methods, such as UML [1 1],
provide a well-suited toolbox for component-based application development, but current
practice shows that the OO technology hinders the development of component-based
systems. Object-oriented analysis and design methods are domain-driven, which usually
leads to designs based on domain objects. Most of these methods assume that developers
build an application from scratch, and they incorporate reuse of existing architectures and
components too late in the development process (if at all) [20]. On the othef hand,

component-based software development emphasizes identifying and managing

43



interactions among preexisting pieces of software in order to integrate them into new
systems. The UML sequence diagrams provide information on identifying and managing
interactions among components in a set of scenarios. A sequence diagram gives a useful
global view éf the possible interactions between component instances, without referring
to particular executions of the system. Therefore, a sequence diagram is a synthesis of all
participants in a set of scenarios. I3S uses UML sequence diagrams as the design

specifications for system behavior.

Design Implementation: A sequence diagram shows an interaction arranged in time
sequence. In particular, it shows the instances participating in the interaction by their
“lifelines” and the stimuli they exchange arranged in time sequence. Therefore, the
implementation must evaluate the performance of the precision of the time interval, the
number of iterations, and the target platform of the results obtained with respect to the
design specifications. The synthesis system must have the knowledge of the software
components available in the design library, which is a collection of UML class diagrams
in I3S. The synthesis system then selects the target containers, allocates of the software
components, identifies the involving software components, and inserts the connectors.
The process is similar to convert the RTL description or model to a logic level

implementation.

Design Verification: UML defines the formal syntax and semantics for sequence
diagrams. Besides that, a formal definition of connectors and components is necessary for

verifying the composed software. I3S uses SPIN, which is a specification technique using
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formal language PROMELA that is generally based on CSP, as the model checker. I3S
generates the formal description of the interaction entities, component instances, and

sequence diagrams as inputs for SPIN.

As a result, I3S generates the collection of components from UML sequence diagrams
and class diagrams. Furthermore, with the formal syntax and semantics of sequence
diagrams and the formal deﬁnition of connectors and components, I3S uses SPIN to

model-check the synthesis of components and connectors.

6. KOSOVA WAR ASSESSMENT PRESENTATION - A Conceptual

Demonstration for Feasibility

The Kosova War Assessment Presentation Application is a component based application.
The data for the application is stored in a database. The user asks a query to the database
by selecting a region on map, database answers that query and the data returned in the

query result are handled by different components. The block diagram of the application is

shown in Figure 9.




MAP VIEWER
QUERY GENERATOR
DATABASE
Chart A Image
Query Result
Video Text Power Point Web Page

Figure 9. System Diagram for the Kosova War Demonstration.

6.1. Overall Look of the Application
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The application looks like the one shown in Figure 10. The frames can be resized and

displaced, and the look can be changed by the user.

vifiedodegy

An apartment
bullding.and:a radio
relay station
destroyed.

Figure 10. A Demonstration Snapshot.

First, the user selects a region on the map to see the war assessment in that region. Upon
selection, a query about that region is generated and sent to the database. The database
returns the results for the query and then the results are automatically displayed in the
corresponding frames. A chart about the destructions in that region is displayed on a

chart. An image from the region is displayed in an image frame. Two videos related to
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that region are displayed in video frames. Any one of videos can be selected to be played
using the buttons beneath the video frame. A short information about the region is shown
in a text frame. A PowerPoint frame displays the power point presentation about that
selected region. Also a web page related to that region is displayed on a web page frame.

Frames can be moved or resized on the application.
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The information is stored in a database indexed by the city name in the regions.
The information is handled by components. The components used in the development

are:

Map Viewer Component: This component displays single or multiple piece maps with

defined coordinates. Allows user to select a rectangular region on the map and returns the

coordinates of the selected region.
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Figure 11. Map Viewer Component.

Query Generator Component: This component generates a query using the coordinates

returned from map viewer and sends that query to data control to be handled.

ADO Data Access Component: This component handles all interaction with the

database. It sends queries, stores returned query results, handle updates.

Chart Component: This component draws the chart of information related to destruction

returned from database as the query result.




Image Viewer Component : This component is used to display the images associated

with the region selected and returned by database as the query result.

Figure 12. Image Viewer Component.

Video Display Component: This component is used to display videos associated with

the selected region and returned in the query result by the database. There are two videos
associated with each selected region. The user can go to the next or previous video by
using the buttons under the video display. Also, this component allows random access to

the video frames and pausing.
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Figure 14. PowerPoint Display Component




PowerPoint Display Component: This component handles the display of PowerPoint

presentations associated with the region selected. It allows navigation through the slides.

Web Display Component: This component displays the web pages associated with the

selected region. It is a fully functional web browser without the buttons and menus.
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Figure 15. Web Display Component
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6.2. Connecti_on to CVW for Collaboration

Kosova demonstration is a system that presents interactive presentations
collaboratively to audiences on the Internet. It uses a Collaborative Virtual
Workspace (CVW) server, which is developed by MITRE Corporation, to provide a
virtual workspace where audiences can communicate, collaborate, and share
information, regardless of their geographic location. The CVW utilizes client/server

architecture to implement the shared virtual space. The CVW client and Server

maintain persistent connections and communicate via TCP/IP and MOO Client
Protocol (MCP). MCP supports textual communication, navigating and interacting

with objects in the virtual space, and receipt of state information.

It is developed using I3S that demonstrates its capability of reusing existing COTS
components, composing components hierarchically, conducting inter-framework
message exchange, and performing message synchronization by integrating I3S

interaction entities with the selected COTS components.

The use case of the demonstration is shown Figure 16.
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Figure 16. Use case of Kosova Demonstration.

Figure 17 shows the static structure of the Kosova application.
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Figure 17. The Static Structure of Kosova Demonstraion

Figure 18 shows the behavior specification of the Kosova demonstration.
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Figure 18. The Behavior Specification of KosovaApp

Figure 19 shows the static structure of a Kosova presentation.
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Figure 19. The Static Structure of a Presentation Component

Figures 20 and 21 show the behavior speciﬁcatibn of a Kosova presentation.
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Figure 20. The behavior specification of the presentation in figure 3 (part 1)
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Figure 21. The behavior specification of the presentation in figure 3 (part 2)

Figure 22 shows the static structure of the CVWConnection.
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Figure 22. The Static Structure of the CVWConnection

Figures 23 and 24 show the behavior specification of the CVW Connection.
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Figure 23. The behavior specification of the CVW Connection (part 1)
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Figure 24. The behavior specification of the CVW Connection (part 2)
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